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Malfliet first proposed a simple solution method for the multisoliton solution of
the KdV equation. Abdel-Rahman used Malfliet’s method in a slightly modified
form, and gave the multisoliton solution of the mKdV equation, RLW equation,
Boussinesq equation, and modified Boussinesq equation. In this paper, we solve
the soliton solution of the cKdV–mKdV equation by using this method.

1. INTRODUCTION

An interesting method for the multisoliton solution of the KdV equation
was proposed by Malfliet [1]. The method is much simpler than the intricate
inverse scattering transform approach of Gardner et al. [2], which applies to
a variety of nonlinear evolution equations. Abdel-Rahman [3] further obtained
the multisoliton solution of the mKdV equation, the RLW equation, the
Boussinesq equation, and the modified Boussinesq equation by using Mal-
fliet’s method in a slightly modified form. In this paper we develop this
method and obtain the multisoliton solution of the combined KdV and mKdV
equation (cKdV–mKdV E)

ut 1 6uux 1 6u2ux 1 uxxx 5 0 (1)

Equation (1) is widely used in such fields as solid-states physics, plasma
physics, fluid physics, and quantum field theory [4, 5]. Equation (1) is
integrable, which means that it has a Bäcklund transformation [5], has a
bilinear form, a Lax pair, and an infinite number of conservation laws [6]
Coffey [7] solved Eq. (1) by a series expansion method [8]. Mohamad [9]
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solved the traveling wave solutions by both a direct method and a leading
order analysis method. Lou and Chen [10] presented a mapping approach for
the construction of exact solitary wave solutions and cnoidal wave solutions of
Eq. (1).

2. SOLUTION METHOD

Performing a dependent variable transformation u → u/l, t → l2t, x →
lx, where l is as yet an arbitrary parameter, we get
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Next we change the dependent variables (x, t) to (j, t), where j 5 x 2 vt
(v an arbitrary parameter) and t 5 t, and require u to depend on j only, i.e.,
u 5 u(j), ­u/­t 5 0. This implies that in a frame traveling with velocity v,
we see a stationary wave u. Equation (2) then becomes
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Following the method of refs. 1 and 3, we write

u(j) 5 f (j)g(j) (4)

where f (j) and g(j) are two arbitrary functions. Then
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and we write
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5 n2 fgu
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where n1 1 m 5 6, n2 1 m 5 6/l.
Substitution of Eqs. (5)–(8) into Eq. (3) then gives
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Motivated by the occurrence of dg/dj in both the second and third terms,
we utilize the arbitrariness in f and g and set
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l
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with a similar equation for g. Thus with c 5 f, g we have the Schrödinger
equation
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in which u2 1 u is the scattering potential and v/m the eigenvalue. Substitution
of Eq. (11) (c 5 f, g) into Eq. (9) gives
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On the other hand, differentiating Eq. (11) with respect to j, we get
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which coincides with Eq. (12) provided m 5 4, n1 5 2, n2 5 4, i.e., 6/l 5
8 or l 5 3/4. Thus each of the two functions f and g satisfies the same
Schrödinger equation
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cjj 1
3
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We now assume that the potential is 2(u2 1 u) , 0 and N distinct
discrete eigenvalues 2kn

2 5 2vn /4 (n 5 1, 2, . . . , N ) associated with it.
So we rewrite Eq. (14) as

d 2cn

dj2 1
3
4

(u2 1 u 2 kn
2)cn 5 0, jn 5 x 2 4kn

2t (15)

Considering (4), the general solution of Eq. (1) can be written as

u 5 c2
n(jn) (16)

If the wave functions cn do not overlap with each other, we may write
Eq. (15) as
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i.e.,
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In order to solve Eq. (18), let

cn(j) 5 !wn(j) (19)

then by Eq. (18) we get the following equation satisfied by wn (j):
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We suggest that (20) might find a solution of the following form:

wn(j) 5
A exp[a(j 1 j0)]

{1 1 exp[a(j 1 j0)]}2 1 B exp[a(j 1 j0)]
(21)

where A, B, a are constants to be determined, and j0 is a fixed real number.
By (21), we get

dwn

dj
5

A a exp[a(j 1 j0)] 2 A a exp[3a(j 1 j0)]
{1 1 exp[a(j 1 j0)]}2 1 B exp[a(j 1 j0)]

(22)

and

d 2wn

dj2 5
A a2 exp[a(j 1 j0)]f(j)

({1 1 exp[a(j 1 j0)]}2 1 B exp[a(j 1 j0)])3 (23)
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where

f(j) 5 1 2 (2 1 B) exp[a(j 1 j0)] 2 6 exp[2a(j 1 j0)]

2 (2 1 B) exp[3a(j 1 j0)] 1 exp[4a(j 1 j0)] (24)

Substituting (21)–(24) into (20), we get the following equations satisfied
by A, B, and a:

a2 2 3kn
2 5 0 (25)

3
2

A 2 3kn
2 (2 1 B) 2 a2(2 1 B) 5 0 (26)
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3
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It follows from (25)–(27) that

a 5 !3kn (28)

A 5 6
16kn

!3 1 16kn
2

(29)

B 5 22 6 2! 3
3 1 16kn

2 (30)

or

a 5 2!3kn (31)

A 5 6
16kn

!3 1 16kn
2

(32)

B 5 22 6 2! 3
3 1 16kn

2 (33)

Substituting (28)–(33) into Eq. (20), we have the following solutions of
Eq. (20):

wn1(j) 5
16kn

!3 1 16kn
2

exp[!3kn(j 1 j0)]

3 1{1 1 exp[!3kn(j 1 j0)]}2

1 122 1 2! 3
3 1 16kn

22 exp[!3kn(j 1 j0)]2
21

(34)
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wn2(j) 5 2
16kn

!3 1 16kn
2

exp[!3kn(j 1 j0)]

3({1 1 exp[!3kn(j 1 j0)]}2

1122 2 2! 3
3 1 16kn

22 exp[!3kn(j 1 j0)])21 (35)

Solutions (34) and (35) can be transformed into

wn(j) 5 6
[8kn /!(3 1 16kn

2)] sech2[(!3/2)kn(j 1 j0)]

2 1 [21 1 !3/(3 1 16kn
2)] sech2[(!3/2)kn(j 1 j0)]

(36)

Thus from Eqs. (19) and (16), Eq. (1) admits the following exact soliton
solution:

u 5 c2
n 5

[8kn /!(3 1 16kn
2)] sech2[(!3/2)kn(j 1 j0)]

2 1 [21 1 !3/(3 1 16kn
2)] sech2[(!3/2)kn(j 1 j0)]

(37)

3. CONCLUSION

We have used a simple solution method introduced by Malfliet and
generalized by Abdel-Rahman in order to obtain the soliton solutions for the
cKdV–mKdV equation (1). Further applications of this method are under
study.
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